
2/25/2010

1

CS 188: Artificial Intelligence
Spring 2010

Lecture 12: Reinforcement Learning II

2/25/2010

Pieter Abbeel – UC Berkeley

Many slides over the course adapted from either Dan Klein,

Stuart Russell or Andrew Moore

1

Announcements

� W3 Utilities: due tonight

� P3 Reinforcement Learning (RL):

� Out tonight, due Thursday next week

� You will get to apply RL to:

� Gridworld agent

� Crawler

� Pac-man

2

2/25/2010

2

Reinforcement Learning

� Still assume a Markov decision process

(MDP):

� A set of states s ∈ S

� A set of actions (per state) A

� A model T(s,a,s’)

� A reward function R(s,a,s’)

� Still looking for a policy π(s)

� New twist: don’t know T or R
� I.e. don’t know which states are good or what the actions do

� Must actually try actions and states out to learn
3

The Story So Far: MDPs and RL

� If we know the MDP

� Compute V*, Q*, π* exactly

� Evaluate a fixed policy π

� If we don’t know the MDP

� We can estimate the MDP then solve

� We can estimate V for a fixed policy π

� We can estimate Q*(s,a) for the

optimal policy while executing an

exploration policy

4

� Model-based DPs

� Value and policy

Iteration

� Policy evaluation

� Model-based RL

� Model-free RL:

� Value learning

� Q-learning

Things we know how to do: Techniques:

2/25/2010

3

Problems with TD Value Learning

� TD value leaning is a model-free way

to do policy evaluation

� However, if we want to turn values into

a (new) policy, we’re sunk:

� Idea: learn Q-values directly

� Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

6

Active Learning

� Full reinforcement learning
� You don’t know the transitions T(s,a,s’)

� You don’t know the rewards R(s,a,s’)

� You can choose any actions you like

� Goal: learn the optimal policy

� … what value iteration did!

� In this case:
� Learner makes choices!

� Fundamental tradeoff: exploration vs. exploitation

� This is NOT offline planning! You actually take actions in the
world and find out what happens…

7

2/25/2010

4

Detour: Q-Value Iteration

� Value iteration: find successive approx optimal values
� Start with V0(s) = 0, which we know is right (why?)

� Given Vi, calculate the values for all states for depth i+1:

� But Q-values are more useful!
� Start with Q0(s,a) = 0, which we know is right (why?)

� Given Qi, calculate the q-values for all q-states for depth i+1:

8

Q-Learning

� Q-Learning: sample-based Q-value iteration

� Learn Q*(s,a) values

� Receive a sample (s,a,s’,r)

� Consider your old estimate:

� Consider your new sample estimate:

� Incorporate the new estimate into a running average:

10

2/25/2010

5

Q-Learning Properties

� Amazing result: Q-learning converges to optimal policy

� If you explore enough

� If you make the learning rate small enough

� … but not decrease it too quickly!

� Basically doesn’t matter how you select actions (!)

� Neat property: off-policy learning

� learns optimal Q-values, not the values of the policy you are

following

12

Exploration / Exploitation

� Several schemes for forcing exploration
� Simplest: random actions (ε greedy)

� Every time step, flip a coin

� With probability ε, act randomly

� With probability 1-ε, act according to current policy

� Regret: expected gap between rewards during
learning and rewards from optimal action
� Q-learning with random actions will converge to optimal values,

but possibly very slowly, and will get low rewards on the way

� Results will be optimal but regret will be large

� How to make regret small?

14

2/25/2010

6

Exploration Functions

� When to explore

� Random actions: explore a fixed amount

� Better ideas: explore areas whose badness is not (yet)

established, explore less over time

� One way: exploration function

� Takes a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important)

16

Q-Learning

� Q-learning produces tables of q-values:

18

2/25/2010

7

Recap Q-Learning

� Model-free (temporal difference) learning

� Experience world through episodes

� Update estimates each transition

� Over time, updates will mimic Bellman updates

19

a

s

s, a

s’

Q-Value Iteration (model-based, requires known MDP)

Q-Learning (model-free, requires only experienced transitions)

r

Q-Learning

� In realistic situations, we cannot possibly learn
about every single state!
� Too many states to visit them all in training

� Too many states to hold the q-tables in memory

� Instead, we want to generalize:
� Learn about some small number of training states

from experience

� Generalize that experience to new, similar states

� This is a fundamental idea in machine learning, and
we’ll see it over and over again

20

2/25/2010

8

Example: Pacman

� Let’s say we discover
through experience
that this state is bad:

� In naïve q learning, we
know nothing about
this state or its q
states:

� Or even this one!

22

Feature-Based Representations

� Solution: describe a state using
a vector of features (properties)
� Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

� Example features:
� Distance to closest ghost

� Distance to closest dot

� Number of ghosts

� 1 / (dist to dot)2

� Is Pacman in a tunnel? (0/1)

� …… etc.

� Is it the exact state on this slide?

� Can also describe a q-state (s, a)
with features (e.g. action moves
closer to food)

23

2/25/2010

9

Linear Feature Functions

� Using a feature representation, we can write a
Q function (or value function) for any state
using a few weights:

� Advantage: our experience is summed up in a
few powerful numbers

� Disadvantage: states may share features but
actually be very different in value!

24

Function Approximation

� Q-learning with linear q-functions:

� Intuitive interpretation:
� Adjust weights of active features

� E.g. if something unexpectedly bad happens, disprefer all states
with that state’s features

� Formal justification: online least squares
25

Exact Q’s

Approximate Q’s

2/25/2010

10

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Regression

Prediction Prediction

27

Ordinary Least Squares (OLS)

0 20
0

Error or “residual”

Prediction

Observation

28

2/25/2010

11

Minimizing Error

Approximate q update explained:

29

Imagine we had only one point x with features f(x):

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

